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Abstract: Sr-based oxalate-phosphate-amine MOF was typically prepared under mild 

hydrothermal synthesis using anhydrous strontium nitrate Sr(NO3)2. Water as a green 

solvent, oxalic acid as the aliphatic linker, urea as the directing agent and 

orthophosphoric acid were used. The produced Sr-OPA-MOF has been typified by 

TEM, XRD, and FT-IR techniques. The synthesized MOF was found to exhibit 

outstanding catalytic activity on the formation of xanthene (14-phenyl-14H-dibenzo 

[a,j] xanthene).  
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1.Introduction 

A new field, metal organic frameworks 

(MOFs), have come into view as auspicious 

crystalline materials in several areas for their 

flexible properties, typically built through the 

assembling of organic linkers and metal centers 
[1]

. Oxalate-phosphate-amine MOF (OPA-

MOF) was first announced by Manuela 

Anstoetz in 2015
[2]

. He has presented another 

green MOF in which the corner-sharing PO4
- 

and FeO6
- 

units can be associated through the 

oxalic acid ligand through two ways shaping a 

full-scale elastic system which conveys 

ammonium from disintegrated urea as 

visitors
[3]

. The oxalate structure is a wellspring 

of vitality for oxalotrophic microorganisms and 

carbon by adequate solvency within soil 

arrangement, which empowers the carbonate 

biomineralization using the pathway of oxalate-

carbon causing an expansion in the pH soil
[4]

. 

OPA-MOF is synthesized according to the 

topology saying that the attached organic 

ligands, if possible, have multiple electron 

donors, like nitrogen and oxygen, during the 

conjunction with the structure directing agent to 

control the framework formation
[5]

. For 

example, a widely investigated aliphatic ligand 

oxalic acid has unpredictable tasks in the 

framework acting as a bi- or multi-dentate 

ligand. In the field of plant soil systems, oxalate 

can also play the important roles identical to a 

chelator for the release of soil bound 

phosphorus; a design strongly used by plants to 

recover P bioavailability
[6]

. Inevitably, 

oxalotrophic bacteria exist in nearly any soil 

and use oxalate as a carbon source for their own 

metabolism, generating carbonates as a result 

through the oxalate-carbonate-pathway
[7]

. 

Otherwise, Urea as a SDA can supply the main 

plant nutrient
[8]

; N. It would surely have to be a 

di-amine as an environmentally benign, on 

account of toxicity that concerns from 

ethylenediamine, or similar in soil profiles. The 

urea procedure or uniform precipitation method 

is applied for the hydrothermal assembly of 

inorganic hydrous metal-oxide minerals. 

Through this method, the distribution of 

ammonium ions is homogeneous in the 

solution, affecting the solution H
+
 gradient, 

which control the modification of product 

crystallinity
[9]

. This theory assures Warner and 

Shaw’s feedback about the urea decomposition 

in aqueous solutions. Researchers in MOF 

synthesis did not think about urea for 

controlling or medical applications, as small 

pores may form as objected to the considerably 

used bigger di-amines and organic linkers
[10]

. A 

strategy to build a metal organic structure from 

the SDA (urea) with a Sr-phosphate backbone, 

and a moiety of an oxalate construction which 

basically be broken down microbially, attracted 

us a lot. Manuela Anstoetz has concentrated on 

OPA-MOF as manure yet in this research, we 

worry about the catalytic activity of Sr-OPA-

MOF. 
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The medicate development industry has 

showed an inspiring effort toward xanthenes, 

first and foremost 14-phenyl-14H-dibenzo [a,j] 

xanthene. Xanthenes are formed through the 

condensation of β-naphthol with aromatic 

aldehydes in the existence of acid catalysts such 

as heteropoly acid supported boric acid
[11]

, 

MCM-41
[12]

, succinimide-N-sulfonic 

acid
[13]

 and silica attached N-propyl sulfamic 

acid
[14]

.This is explained on the basis of a huge 

area of biological and pharmacological features 

like antiviral
[15]

, anti-inflammatory
[16]

, 

antifungal activities and antibacterial
[17]

, usage 

in photodynamic therapy
[18]

, dyes
[19]

, 

visualization of biomolecules through pH-

sensitive fluorescent materials
[20]

and laser 

technologies
[21]

 becoming to their attracting 

spectroscopic merits.  

2. Experimental  

2.1 Materials   

All organic and inorganic chemicals utilized 

for the elaboration of catalysts such as 

strontium nitrate (Sr(NO3)2), orthophosphoric 

acid (H3PO4), oxalic acid (C2H2O4) and urea 

(CH4N2O) were of analytical degree.   

2.2 Preparation of Sr-OPA-MOF 

The nanocatalyst was prepared under mild 

hydrothermal synthesis from a homogenous 

solution of strontium nitrate, orthophosphoric 

acid, oxalic acid, urea and water with molar 

ratios of (0.94:5.6:1:3:100), respectively. The 

mixture was exposed to ultrasonic for 10 mins, 

then was stirred at room temperature for 1 hour, 

put into a Teflon tube, and set into a pre-heated 

oven for 72 hours at 100
o
C. Then, the Teflon 

tube was taken away from the oven, cooled, 

washed several times with water and dried at 

80
o
C

[22]
. 

2.3 Techniques   

2.3.1 X-ray diffraction analysis (XRD)  

XRD patterns of the nanocatalyst was 

recorded using PW 150 (Philips), Cu Kα 

radiation source and Ni channel at a low and 

high point. The instrument was worked at 40 

kV and 45mA
[23]

. The checking was made for 

2θ point from 1 to 70 degrees, with a stage size 

of 0.02 and a stage time of 2 seconds. This apex 

is requested to a hexagonal unit cell and used 

identified with Bragg's law in figuring d100 

isolating for the hexagonal pore mastermind 

similarly as the unit cell parameter (ao)
[24]

. 

Bragg's law and its association with the unit 

cell parameter are fused into conditions (2-1) 

and (2-2). Where the ordinary crystallite size of 

particles was constrained by XRD line 

augmenting strategy using Debye-scherrer 

condition (2-3) 

𝒏𝝀 = 𝟐𝒅𝟏𝟎𝟎𝒔𝒊𝒏 (𝜽)                    (2-1)  

    
𝟐𝒅𝟏𝟎𝟎

√ 
                                 (2-2)  

  
𝟎  𝝀

    𝜽
                                  (2-3)  

Where λ is radiation wavelength (A
0
), D is 

crystallite size, θ = angle of reflection and β is 

(radians) the line breadth 
[25]

. 

2.3.2 Transmission electron microscopy 

(TEM)  

TEM tests were set up by dunking in a water 

suspension of smooth sample powders onto a 

copper grid covered with porous carbon foil 

and dried at a surrounding temperature. 

Transmission electron microscopy images and 

particle size were obtained utilizing JEOL-jem-

2100 transmission electron microscope working 

at 120 KV
[26]

.  

2.3.3 Fourier transform-infrared spectra 

(FT-IR)  

Fourier transform infrared spectra of the 

meso-spongy frameworks were performed by 

utilizing the in situ FT-IR spectroscopic 

procedure on Nicolet magna-IR 550 

spectrometer in the mid-IR region 400-4000 

cm
-1 

through a 4 cm
-1

 resolution and 128 

outputs. The sample was ground with KBr and 

squeezed into a dainty wafer which was set 

inside the IR cell and afterwards the range was 

recorded
[27]

. 

2.4 Catalytic activity of Sr-OPA-MOF on 14- 

phenyl -14H-dibenzo [a,j] Xanthene 

synthesis 

A reaction of β-naphthol (2 mmol) and 

benzaldehyde (1 mmol) with 0.10 g of the 

catalyst (activated at 120 °C for 2 h), was 

considered to obtain xanthene
[28]

. The reaction 

was done with stirring for suitable time at 125 

°C in a 50 mL flat bottomed flask. To check the 

completion of the reaction, the reaction was 

tested by TLC technique. After that, the product 

was dissolved in chloroform and the catalyst 

was separated through filtration and washed 
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with chloroform to reuse again. Aqueous 

ethanol (15%) was used for three times to 

recrystallize the yield. The yield% was 

calculated as follows
[29]

: 

Yield (wt.%) = 

 (
                          

                             
)           (2-4)    

3. Results and discussion 

3.1 X-ray diffraction analysis 

In Fig.1, the low x-ray pattern of MOF 

shows typically two reflections between 2ϴ = 0 

to 10
O
. The position of the peaks are 2ϴ = 0.68

 

O
 (d = 130.65 Å), 2.39

 O
 (d = 36.97 Å). The low 

peaks data confirm the formation of  

mesoporous MOF sheets with superior 

crystallinity, porosity and intensity
[30]

. From the 

high XRD data in Figure 2 between 2ϴ = 10 to 

70
O
, a strong intense peak at around 2ϴ = 14.49

 

O 
(d = 6.11 Å) is observed as evidence of Sr-

MOF with oxalic acid as a linker existence
[22]

. 

The peaks near 25
o
 are indicative of amorphous 

carbon
[31, 32]

. The MOF sheets have a 

characteristic peak at 2 ϴ of ~ 24
o
 which in turn 

resembles that of GO sheets
[33]

. XRD analysis 

shows two distinct peaks at 18° and 30° 

imputed to phosphorous doping
[34]

. Generally, 

the characteristic diffraction peaks of Sr-MOF 

have lower 2ϴ values indicating an increase in 

the lattice constants and the surface area. The 

results of crystallite size of the nanocatalyst 

concurred well with the consequence of 

crystallinity (%), the total area of all peaks and 

FWHM [
O
2Th.] in the Table 1. 

 
Fig.1. The low angle X-ray diffraction of   

 

Fig.2. The high angle X-ray diffraction of 

Sr-OPA-MOF Sr-OPA-MOF. 

Table.1. XRD parameters of Sr-OPA-MOF 

The 

samples 

Crystallite 

size D (nm) 

%Crysta

llinity 

Total area 

of allpeaks 

FWHM 

[O2Th.] 

Sr-OPA-

MOF 
16.2 98.9 11496.27 0.4925 

 

3.2 Transmission electron microscopy 

(TEM) 

framework nanosheets which exhibit a high 

porosity (mesoporous MOF). The morphology 

of Sr-MOF may be displayed as a graphene like 

MOF as it is a Sr-MOF within C, N and P 

inside its pores
[33]

. 

 
Fig.3. Transmission electron microscopy 

images of Sr-OPA-MOF. 
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3.3 Fourier transform-infrared spectra (FT-

IR)  

The FT-IR spectra of the MOF in Fig.4, 

exhibited the distinct stretching vibration of 

carboxylate anions at 1618 cm
−1

, proving the 

nature of reaction of –COOH groups in the 

oxalic acid with metal ions
[35]

. The presence of 

water and –OH groups in the structure of the 

material is proved through the outcrop of a 

broadband at 3497 cm
−1[36]

. The band at 1316 

cm
−1

 is associated with O–C stretching
[37]

. The 

region at 919 cm
−1

 can be referred to P–O–(H) 

band
[38]

. The sharp absorption bands at 956 

cm
−1

 and 885 cm
−1

 can be accredited to out of 

plane bending vibration of Sr–O
[39]

. The band 

at 2227 cm
−1

 is characteristic for –N=C=O, –

N=C=N, and C=C=O groups
[40, 41]

.  

 
Fig.4. Fourier transform-infrared spectra of Sr-

OPA-MOF 

3.4 Catalytic activity of Sr-OPA-MOF on the 

synthesis of 14- phenyl -14H-dibenzo [a,j] 

xanthene 

3.4.1 Effect of molar ratio of benzaldehyde : 

β-naphthol 

The reaction was carried out over Sr-OPA-

MOF, using different molar ratios of 

benzaldehyde and β-naphthol from 1:1, 1:1.5, 

and 1:2 to 1:3 at 125
 °

C under solvent-free 

conditions. Fig.5 shows that 1:2 is the most 

suitable molar ratio of reactants. Further 

 
Fig.5. Effect of molar ratio of the reactants on 

the catalytic activity of Sr-OPA-MOF 

3.4.2 The effect of different dosages of Sr-

OPA-MOF  

Different weights (0.02, 0.03, 0.05, 0.07, 0.1 

and 0.2 g) of MOF were examined on xanthene 

synthesis as in Fig.6. The yield of reaction is 

increased from 33% to 81% with increasing the 

dosage of MOF from 0.02g to 0.05g. No 

worthy distinction was noticed during the 

amount of MOF was enhanced from 0.07g to 

0.2g. The number of active sites on MOF rise 

with increasing the weight of MOF, which in 

turn, increases the synthesis average of 

xanthene, and that would raise the conversion 

rate. 

 
Fig.6. The effect of Sr-OPA-MOF dosages on 

of its activity. 

3.4.3 Effect of different reaction times 

The reaction was followed at different times 

from 30 to 180 mins. It was observed from the 

Fig.7 that the yield% increases progressively 

with increasing the time till reach maximum at 

2 hrs (120 min), then become constant by 

increasing the time over 2 hrs. This indicates 

that the 2 hrs is the optimum time for the 

reaction to be completed. 

 
Fig.7. Effect of reaction times on the activity of 

Sr-OPA-MOF 
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3.4.4 Catalyst reusability  

We examined the recycling of the Sr-OPA-

MOF nanocatalyst three times in xanthene 

synthesis applying the same reaction 

conditions. Fig.8 illustrates that the MOF 

showed reusability after four runs. Decrease in 

the activity of Sr-OPA-MOF could be 

attributed to the loss in MOF weight.  

 
Fig.8. Catalyst reusability of Sr-OPA-MOF.  

3.5 Conclusion 

An eco-friendly oxalate-phosphate-amine-

MOF with strontium (II) was synthesized under 

conditions of depressed urea ratio, low 

temperature, excess reaction time, elevated 

water ratio and was of high virtue with 

convenient P and N contents. The bi-dentate 

linker (oxalate bridges) between Sr-centers 

arranges the nanosheets, and then as pillars 

linking the nanosheets into a framework. A 

structural characterization of Sr-OPA-MOF by 

FT-IR, XRD and TEM demonstrated the 

formation of a mesoporous nanosheets of Sr-

OPA-MOF that exhibited ultrahigh porosity 

and crystallinity. Using a facile protocol for the 

assembly of 14- phenyl -14H-dibenzo [a,j] 

xanthene from β-naphthol and benzaldehyde, 

has hopeful purposes such as high yield, 

generality, efficiency, cleaner reaction profile 

and recyclability which make it a salutary and 

charming process for the synthesis of xanthenes 

as biologically thought-provoking compounds. 

The % yield of xanthene reached a maximum 

value of 81% by (0.05g) of Sr-OPA-MOF after 

2 hrs at 125
o
C.  
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