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Abstract- Seven new thiophene hydrazide derivatives 3a-e, 5, and 7 were prepared 

through the coupling of active methylene of compound 1 with diazonium salts of 

aromatic amines 2a-e, and heterocyclic amines 4 and 6 at 0-5 
o
C in pyridine. The 

studied compounds 1, 3a-e, and 5 could exist in two possible tautomeric forms, which 

are the enol and keto tautomer. The optimized molecular structures and calculation of 

the total energies of both tautomers revealed that the enol tautomer is energetically 

lower than its corresponding keto form. A prediction study for the biological activities 

of synthesized thiophene hydrazide derivatives 3a-e and 5 was performed via using 

PASS online software, which displayed promising activities in the treatment of 

Posttraumatic stress disorder, as Phosphodiesterase X inhibitor (3a, 3b), and as 

Sarcosine oxidase inhibitor (3d). In addition, DFT calculations showed that compounds 

3a, 3b, and 3d have chemical activity among all the newly synthesized compounds due 

to their lower band gaps. 
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1. Introduction

Substituted cyanoacetamides play a crucial 

role as intermediates in the production of 

various dyes, agrochemicals, and 

pharmacologically active compounds [1]. 

Tautomeric dyes, including azo derivatives and 

azo-hydrazones, showed dual activities with 

antibacterial and antioxidant properties, 

respectively [2,3]. Hydrazones have been 

documented to possess a wide range of 

biological effects, including anti-HIV, 

analgesic, anticonvulsant, antitumor, anti-

inflammatory, antimicrobial, and anti-

tuberculosis properties [4,5]. Also, these 

compounds have been documented to function 

through various mechanisms, such as blocking 

RNA and DNA synthesis, suppressing mitosis 

[6], triggering caspase-dependent apoptosis, 

hindering tubulin polymerization, inducing cell 

cycle arrests in the G2/M phase [7], causing 

cancer cell cycle arrest in the sub G1/G0 phase 

[8], and promoting tumor cell apoptosis [9] 

(Figure 1). 

Azo dyes derived from thiophene showed 

colors ranging from red to blue and possess a 

notably high extinction coefficient when 

compared to azo dyes derived from anilines 

[10]. In addition, compounds containing a 

thiophene nucleus possess attracted significant 

interest in field of drug synthesis due to their 

wide range of biological activities, including 

antimicrobial [11,12], antidepressant [13], 

anticonvulsant [14], and anti-inflammatory 

properties [15]. It is worth to highlight that 

thiophene derivatives serves as a promising 

structural framework that has made significant 

contributions to the advancement of anticancer 

medications. It has demonstrated effectiveness 

not only in the treatment of various cancer 

types but also in acting as a chemo preventive 

agent against cancer [16,17,18,19,20]. 

Additionally, thiophene derivatives have been 

reported to function as inhibitors of epidermal 

growth factor receptor (EGFR), caspase 9 

inhibitors, and inducers of apoptosis [21,22,23]. 

2. Materials and methods 

Melting points (uncorrected) were measured 

in degree centigrade on Gallenkamp apparatus. 

Thermo Scientific Nicolet iS10 FTIR 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Gp9oPv0AAAAJ&sortby=pubdate&citation_for_view=Gp9oPv0AAAAJ:dfsIfKJdRG4C
mailto:ghadaelbana@mans.edu.eg
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spectrometer was used to record infrared 

spectra (KBr). Bruker’s spectrometer 400 MHz 

(
1
H-NMR), 100 MHz (

13
C-NMR) was used to 

measure NMR spectra in DMSO-d6 as a solvent 

and an internal standard. Electron impact mass 

spectra were determined at 70 eV on Varian 

MAT 311Kratos instrument. 

Figure 1: Biologically important hydrazonyl 

compounds 

2.1. General methodology for preparation of 

azo compounds (3a-e) and 5. 

In an ice-cold bath, the aromatic amines 2a-e 

(0.01 mol) underwent diazotization using 

NaNO2 (1 g, 0.015 mol) in concentrated HCl 

(10 ml). The diazotized amine was then 

gradually added into a stirred solution of 

compound 1 (1.93 g, 0.01 mol) in pyridine (25 

ml). The resulting mixture was stirred for 2 

hours, followed by standing at the same 

temperature for an additional 12 hours. The 

resulting precipitate was then filtered and 

recrystallized from DMF and EtOH (2:1) to 

give the anticipated products 3a-e and 5. 

2.1.1. 2-Cyano-N-(-thiophen-2-ylmethylene)-

2-(2-(p-tolyl)hydrazono)aceto-hydrazonic 

acid (3a). Hydrazone derivative 3a was 

obtained in 75% yield as a yellow sheet, m.p.= 

198 
o
C. Rf= 0.67, EtOAc/Petroleum ether (60-

80) (1.5:4). IR (KBr) ν’/cm
-1

: 3499 (OH 

stretch), 3232 (N-H, stretch), 3073 (sp
2
 C-H, 

stretch), 2206 (CN stretch), 1651, 1599, 1545 

(C=N, C=C, stretch). 
1
H-NMR (DMSO-d6): δ 

2.30 (s, 3H, CH3), 7.16-7.69 (m, 7H, Ar-H), 

8.77 (s, 1H, CH=N), 11.43 (s, 1H, NH), 11.90 

(s, 1H, OH); 
13

C-NMR (DMSO-d6): δ 20.95, 

106.70, 111.80, 116.73 (2C), 128.38, 129.48, 

130.23, 131.44 (2C), 134.11, 139.45, 140.21, 

144.10, 158.10 (C-OH); MS (EI) m/e (rel.int.) 

for C15H13N5OS; 311.20 (M
+
, 11.16), 149.50 

(100).  

2.1.2 2-Cyano-2-(2-(4-methoxyphenyl)-

hydrazono)-N-(-thiophen-2-ylmethylene)-

acetohydrazonic acid (3b). Hydrazone 

derivative 3b was obtained in 73 % yield as a 

yellow crystal, m.p.= 172 
o
C. Rf= 0.48, 

EtOAc/Petroleum ether (60-80) (2:4). IR (KBr) 

ν’/cm-1: IR (KBr) ν’/cm
-1

: 3225 (NH stretch), 

3071 (sp
2
 C-H, stretch), 2208 (CN, stretch), 

1656 (C=O, stretch), 1599, 1545, 1484 (C=N, 

C=C, stretch). 
1
H-NMR (DMSO-d6);  3.77 (s, 

3H, OCH3), 6.98-7.67 (m, 7H, Ar-H), 8.76 (s, 

1H, CH=N), 11.41 (s, 1H, NH), 11.93 (s, 1H, 

OH). 
13

C-NMR (DMSO-d6);  55.83, 105.90, 

111.99, 115.15 (2C), 118.20 (2C), 128.37, 

129.43, 131.37, 136.05, 139.49, 143.91, 157.00, 

158.26 ppm (2C). MS (EI) m/e (rel.int.) for 

C15H13N5O2S; 327.58 (M
+
, 81.58), 135.02 

(100). 

2.1.3. 2-Cyano-2-(2-(4-nitrophenyl)-

hydrazono)-N-(thiophen-2-ylmethylene)-

acetohydrazonic acid (3c). Hydrazone 

derivative 3c was obtained in 76% yield as an 

orange powder, m.p.= 222 ℃. Rf= 0.64, 

EtOAc/petroleum ether (60-80) (2:4). IR (KBr) 

ν’/cm
-1

: 3228 (N-H stretch), 3083 (sp
2
 C-H, 

stretch), 2214 (CN, stretch), 1667 (C=O, 

stretch), 1600, 1512 (C=N, C=C, stretch). 
1
H-

NMR (DMSO-d6); δ δ 7.16-8.28 (m, 7H, Ar-

H), 8.80 (s, 1H, CH=N), 11.67 (s, 1H, NH), 

12.34 (br, 1H, OH). 
13

C-NMR (DMSO-d6): δ 

111.04, 111.65, 116.69 (2C), 125.74 (2C), 

128.44, 129.81, 131.85, 139.23, 144.92 (2C), 

147.98, 157.26. MS (EI) m/e (rel.int.) for 

C14H10N6O3S; 342.13 (M
+
, 15.30), 40.16 (100). 

2.1.4. 4-(2-(1-Cyano-2-hydroxy-2-(thiophen-

2-ylmethylene)hydrazono)ethylidene)-

hydrazinyl)benzoic acid (3d). Hydrazone 

derivative 3d was obtained in 77% yield as a 

Yellow powder, m.p.= 268 
o
C. Rf= 0.30, 

EtOAc/petroleum ether (60-80) (3.5:4). IR 

(KBr) ν’/cm
-1

: 3448 (OH, stretch), 2212 (CN, 

stretch), 1666 (C=O, stretch), 1604, 1534 

(C=N, C=C, stretch). 
1
H-NMR (DMSO-d6): δ 

7.15-7.97 (m, 7H, Ar-H), 8.79 (s, 1H, CH=N), 

11.55 (s, 1H, NH), 12.13 (s, 1H, OH), 12.75 

(br, 1H, COOH).
 13

C-NMR (DMSO-d6): δ 

109.59, 111.30, 116.29 (2C), 126.51, 128.42, 

129.65, 131.13, 131.35, 139.30 (2C), 144.65, 
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146.07, 157.63, 167.37. MS (EI) m/e (rel.int.) 

for C14H10BrN5OS; 341.70 (M
+
, 16.42), 301.63 

(100). 

2.1.5. 2-(2-(4-Bromophenyl)hydrazono)-2-

cyano-N-(thiophen-2-ylmethylene)aceto-

hydrazonic acid (3e). Hydrazone derivative 3e 

was obtained in 75% yield as a yellow powder, 

m.p.= 202 
o
C. Rf= 0.64, EtOAc/petroleum ether 

(60-80) (1.5:4). IR (KBr) ν’/cm
-1 

3430 (OH, 

stretch), 3235 (N-H, stretch), 3078 (sp
2
 C-H, 

stretch), 2213 (CN stretch), 1666 (C=O, 

stretch), 1598, 1530, 1482 (C=N, C=C, stretch). 
1
H-NMR (DMSO-d6): δ 7.15-7.68 (m, 7H, Ar-

H), 8.78 (s, 1H, CH=N), 11.53 (s, 1H, NH), 

12.01 (s, 1H, OH). 
13

C-NMR (DMSO-d6): δ 

108.32, 111.54, 116.72, 118.71 (2C), 128.41, 

129.41, 131.64, 132.40 (2C), 139.35, 141.86, 

144.38, 157.77. MS (EI) m/e (rel.int.) for 

C14H10BrN5OS; 374.32 (M
+
, 9.26), 55.09 (100).  

2.1.6. 2-Cyano-2-(2-(1,5-dimethyl-3-oxo-2-

phenyl-2,3-dihydro-1H-pyrazol-4-yl)-

hydrazono)-N-(thiophen-2-ylmethylene)-

acetohydrazonic acid (5). Hydrazone 

derivative 5 was obtained in 72% yield as a 

yellow powder, m.p.= 172 
o
C. Rf= 0.45, 

EtOAc. IR (KBr) ν’/cm
-1

: 3443 (OH, stretch), 

3174 (N-H, stretch), 2208 (CN, stretch), 1658 

(C=O, stretch), 1600, 1519 (C=N, C=C, 

stretch). 
1
H-NMR (DMSO-d6): δ 2.31 (s, 3H, 

CH3), 3.17 (s, 3H, N-CH3), 7.13-7.67 (m, 8H, 

Ar-H), 8.64 (s, 1H, CH=N), 11.01 (br, 1H, 

NH), 11.38 (br, 1H, OH). 
13

C-NMR (DMSO-

d6): δ 11.33, 35.88, 111.58, 124.71, 127.41, 

128.32 (3C), 129.35 (2C), 129.71 (3C), 131.23, 

135.02, 139.52, 143.48, 160.86 (2C). MS (EI) 

m/e (rel.int.) for C19H17N7O2S; 407.15 (M
+
, 

9.48), 44.05 (100). 

2.2. 4-Amino-8,10-dimethyl-N'-(thiophen-2-

ylmethylene)pyrido[2',3':3,4]pyrazolo[5,1-

c][1,2,4]triazine-3-carbohydrazide (7). The 

suspension solution of heterocyclic amine 6 

(1.62 g, 0.01 mol) in a mixture of AcOH and 

concentrated HCl (15 ml: 5 ml) was subjected 

to diazotization using NaNO2 (1 g, 0.015 mol) 

via stirring in an ice bath. This diazotized 

solution was then slowly added into a stirred 

solution of compound 1 (1.93 g, 0.01 mol) in 

pyridine (25 ml). The resulting mixture was 

stirred overnight, and the resultant precipitate 

was filtered and subjected to recrystallization 

from a mixture of DMF and EtOH (2:1) to 

obtain the anticipated product 7. Compound 7 

was obtained in 67% yield as a dark brown 

solid, m.p.> 300 
o
C. Rf= 0.52, EtOAc: EtOH 

(4:0.5). IR (KBr) ν’/cm
-1

: 3316- 3262 (NH2, 

stretch), 1670 (C=O, stretch), 1632, 1580 

(C=N, C=C stretch). MS (EI) m/e (rel.int.) for 

C16H14N8OS; 366.06 (M
+
, 96.09), 248.80 (100). 

3. Results and Discussion 

3.1. Chemistry  

 Azo compounds exhibit impressive coloring 

properties owing to the inclusion of the 

chromophore group (-N=N-), which is linked to 

aromatic or heterocyclic systems [24]. 

Typically, these compounds are produced 

through the diazo coupling of a diazonium salts 

2a-e with the preferred active methylene of 

compound 1. Chemical structures of the new 

hydrazono thiophene derivatives 3a-e, (Scheme 

1) were confirmed according to their spectral 

analyses. As IR spectra for compounds 3a-e 

revealed the appearance of hydroxyl and nitrile 

groups with vibrations in the range of 3430 to 

3499 (OH group) and 2206 to 2214 cm
-1

 (CN 

group), respectively. The 
1
H-NMR spectra of 

3a & 3b showed new singlet signals three 

protons each corresponding for p-methyl, p-

methoxy at δ 2.30 and 3.77, respectively; in 

addition, two singlet signals (one proton each) 

at δ 8.77, 8.76 for CH=N (methine protons), 

11.43, 11.41 for NH and 11.90, 11.93 for OH, 

respectively. Also, 
13

C-NMR spectra of 

compounds 3a & 3b displayed 15 carbon-

signals each for their carbon networks with 

characteristic carbons at δ 20.95 (p-methyl, 3a) 

and 55.83 (p-methoxy, 3b). Furthermore, Mass 

spectra of 3a & 3b displayed a molecular ion 

peaks with m/z = 311.20 (M
+
, 11.16) and 

327.58 (M
+
, 81.58), respectively. Once more, 

1
H-NMR of 3c gave three singlet signals (one 

proton each) at δ 8.80, 11.67 and 12.34 for 

CH=N, NH and OH, correspondingly, and its 
13

C-NMR showed characteristic signals at δ 

111.04, 139.23 and 157.26 for C=N, CH=N, 

and C-OH, respectively. Moreover, mass 

spectrum of compound 3c furnished m/z at 

342.13 (M
+
, 15.30). Furthermore, 

1
H-NMR of 

compound of hydrazono derivative 3d showed 

singlet signals attributed to CH=N, NH, OH 

and COOH groups at δ 8.79, 11.55, 12.13, and 

12.75, respectively. Also, 
13

C-NMR of 

compound 3d displayed 14 carbon-signals of its 
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carbon network with characteristic signal at δ 

157.63 and 167.37 for carbon of C-OH and 

COOH groups, respectively. Mass spectrum of 

compound 3d gave m/z at 341.70 (M
+
, 16.42). 

In addition, the 
1
H-NMR of compound 3e 

displayed three singlet signals (one proton 

each) at δ 8.78, 11.53, and 12.01 ppm for 

CH=N, NH, and OH, respectively, and its 
13

C-

NMR spectrum revealed the attendance of 

carbon signals at appropriate chemical shift 

values. Hydrazone derivative 3e mass spectrum 

revealed a molecular ion peak at m/z = 374.32 

(M
+
, 9.26).  

Numerous derivatives of pyrazole have been 

employed clinically as nonsteroidal anti-

inflammatory drugs, including analgesic and 

antipyretic medications like anti-pyrine. 

Additionally, these derivatives exhibit diverse 

biological activities, encompassing 

antimicrobial, antifungal, antitubercular, anti-

inflammatory, anticonvulsant, anticancer, and 

antiviral properties [25-28]. So, acetohydrazide 

1 coupled with diazonium salt of heterocyclic 

amine 4 to afford the anticipated 

phenylpyrazoloacetohydrazonoic acid 

derivative 5 (Scheme 2). Spectral analyses were 

used to characterize the structure of compound 

5. The IR analysis of compound 5 showed an 

absorption peak at ν’= 3443, 3174, 2208, and 

1658 cm–1, confirmed the existence of OH, 

NH, CN and C=O groups, respectively. Also, 

the 
1
H-NMR spectrum of pyrazolo 5 showed 

four singlet signals at δ 2.31, 3.17, 11.01, and 

11.38 ppm, corresponding to CH3, N-CH3, NH, 

and OH groups, respectively. Furthermore, 
13

C-

NMR spectrum for pyazolo derivative 5 

showed carbon signals at δ 11.33 and 35.88 

ppm attributed to carbon of CH3, N-CH3, 

respectively, which verified its structure. 

Additionally, the mass spectrum of compound 5 

showed an ion peak at m/z= 407.15 (M
+
, 9.48) 

equaling to the molecular formula 

C19H17N7O2S, which coincides with its 

proposed structure.  

The amino pyrazolopyridine served as a 

crucial core structure in various drug 

compounds and played a significant role in 

bioactivities, such as antitumor effects [25,29], 

antimicrobial activities [30], as well as 

antifungal, antiplatelet, and antioxidant 

properties [31]. In light of these data, we aimed 

to utilize the 3-amino-pyrazolopyridine 6 as a 

building block for the synthesis of the 

pyrazolopyridine derivative 8, but the reaction 

furnished the tricyclic derivative 7. The 

skeleton of the new tricyclic 7 was confirmed 

based upon its IR and mass spectral data. The 

IR spectra for compound 7 revealed the 

appearance of stretching peaks at ν’= 3316, 

3262 (NH2), 1670 (C=O), and 1632 (C=N). In 

addition, mass spectrum of compound 7 gave a 

m/z = 366.06 (M
+
, 96.09).  

3.2. Computational approaches 

3.2.1. Molecular modeling 

Computational calculations were conducted 

to assess the chemical reactivity and obtain 

initial insights into the anticipated biological 

evaluation, employing the Gaussian 09 program 

package. The DFT approach, specifically 

B3LYP as a functional and the 6-311G (d,p) 

basis set, was employed in the gaseous state to 

investigate the optimized structures of the 

synthesized compounds [32-35]. The studied 

compounds could exist in two possible 

tautomeric forms. The optimized molecular 

structures of the enol and ketone tautomer of 

compounds 1, 3a-e and 5 calculation of total 

energies of both tautomers are listed in of are 

shown in Figure 2 & 3. It is clear that the enol 

tautomer is energetically lower than the ketone.  

 The HOMO/LUMO symbolize the highest 

occupied and lowest unoccupied molecular 

orbital energies, which indicate the chemical 

reactivity and stability of the prepared 

molecules. As the energy gap is the difference 

between the orbitals, energies (EHOMO- 

ELUMO) indicates the reactivity of the 

synthesized compounds. The molecules that 

have high (ΔEHOMO-LUMO) are called hard 

molecules, meaning less reactivity in the 

treatment biological strains. Conversably, 

molecules that have lower gap energies are 

called soft molecules, besides have high ability 

as biological molecules. Calculations of the 

hydrazono thiophen derivatives 1, 3a-e and 5 

(Figure 4-7) showed that compound 3a is the 

most effective and reactive molecule, as it has a 

lower band gap (-3.641ev) comparing to other 

hydrazono thiophen whose energies gap ranged 

between (-3.600, -2.474 ev), and it is predicted 

to be the most active molecule compared to 

other hydrazono thiophen 1, 3b-e and 5. 
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3.2.2. Computational prediction of biological 

activities: The anticipated biological activity 

was obtained through the utilization of PASS 

online software for the synthesized compounds, 

as outlined in Tables 1 and 2. This tool affords 

predictions correlating Pi (probability to be 

inactive) and Pa (probability to be active) [36]. 

From the results of various biological activity 

predictions, starting compound 1 displayed 

possibility of activity against to Posttraumatic 

stress disorder treatment, Phosphodiesterase 

10A inhibitor, Phosphodiesterase X inhibitor, 

Complement factor D inhibitor, Sarcosine 

oxidase inhibitor, and Malate oxidase inhibitor 

ranging from Pa= 0.909 to Pa= 0.787. 

Comparing biological activity predictions for 

synthesized compounds 3a-e and 5 Against to 

start compound 1, we notice that compounds 

3a, b displayed more possibility of activity Pa= 

0.946, 0.933 towards Posttraumatic stress 

disorder treatment, and 0.912, 0.928 towards 

Phosphodiesterase X inhibitor, respectively, in 

the order of 3a> 3b, which be related to the 

presence of methyl group in 3a (Table 1). Also, 

compound 3d displayed more biological 

activities towards Sarcosine oxidase inhibitor 

(Table 2) comparable to start compound 1. On 

the contrary, the hydrazone thiophene 

derivatives 3c, 3e and 5 showed less predict 

biological activities against Posttraumatic stress 

disorder treatment, Phosphodiesterase X 

inhibitor and Sarcosine oxidase inhibitor. 

Moreover, the obtained predicated biological 

activities are fully compatible with the 

theoretical studies which accomplished via 

Gaussian studies. As compound 3a showed the 

best predicted biological activities confirmed it 

as the softest molecule. 

  
 

Scheme 1:  Scheme for preparation of the new 

hydrazono thiophenes 3a-e. 

Scheme 2:  Scheme for preparation of the new 

hydrazono thiophenes 5 and 7. 

Figure 2: Geometrical optimization of hydrazono thiophenes 1 and 3a-c. 
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Figure 3: Geometrical optimization of hydrazono thiophenes 3d-e, 5. 

 

 

 

Figure 4: Spatial distributions orbitals of hydrazono thiophenes 1 and 3a. 

 

Figure 5: Spatial distributions orbitals of hydrazono thiophenes 3b and 3c. 
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Figure 6: Spatial distributions orbitals of hydrazono thiophenes 3d and 3e. 

 

Figure 7: Spatial distributions orbitals of hydrazono thiophenes 5. 

Table 1:  PASS online biological activities
,
 assessments for compounds 1 and 3a-c. 

Biological Activity 
Compd# 3d Compd# 3e Compd# 5 

Pa Pi Pa Pi Pa Pi 

Posttraumatic stress disorder treatment 0.799 0.001 0.811 0.000 0.809 0.000 

Phosphodiesterase 10A inhibitor 0.541 0.002 0.566 0.002 0.524 0.002 

Phosphodiesterase X inhibitor 0.541 0.002 0.566 0.002 0.524 0.002 

Complement factor D inhibitor 0.410 0.119 0.337 0.178 NA NA 

Sarcosine oxidase inhibitor 0.801 0.004 0.179 0.034 NA NA 

Malate oxidase inhibitor 0.452 0.026 0.285 0.126 NA NA 

Table 2:  PASS online biological activities
,
 assessments for compounds 3d-e and 5. 

Biological Activity 
Compd# 1 Compd# 3a Compd# 3b Compd# 3c 

Pa Pi Pa Pi Pa Pi Pa Pi 

Posttraumatic stress disorder treatment 0.909 0.010 0.946 0.004 0.933 0.006 0.808 0.034 

Phosphodiesterase 10A inhibitor 0.900 0.002 0.740 0.005 0.740 0.005 0.618 0.014 

Phosphodiesterase X inhibitor 0.848 0.020 0.928 0.004 0.912 0.006 0.837 0.023 

Complement factor D inhibitor 0.817 0.003 NA NA NA NA NA NA 

Sarcosine oxidase inhibitor 0.799 0.004 0.752 0.006 0.752 0.006 0.535 0,049 

Malate oxidase inhibitor 0,787 0,019 0,773 0,024 0,711 0,038 0,658 0,053 

 

4. Conclusion: 

In conclusion, we successfully conducted an 

azo coupling reaction involving 2-cyano-N'-

(thiophen-2-ylmethylene)acetohydrazide 1 with 

diazonium salts derived from aromatic amines 

and heterocyclic amines 2a-e, 4, and 6, leading 

to the synthesis of novel hydrazono thiophene 

derivatives 3a-e, 5, and 7, These compounds  

 

were stutdied via DFT simulations to assess 

their stability and reactivity. Furthermore, the 

predicted biological activities of compounds 1, 

3a-e and 5 were screened using pass online 

software. It's important to note that this study 

represents a preliminary investigation, as 

further research on the biological activities of 



  

Mans J Chem. Vol(64)2024                                                                                                                                       29 

these compounds is currently ongoing and will 

be published in due course.. 
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